Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(4): 2385-2397, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38538611

RESUMO

Bone is a complex organic-inorganic composite tissue composed of ∼30% organics and ∼70% hydroxyapatite (HAp). Inspired by this, we used 30% collagen and 70% HAp extracted from natural bone using the calcination method to generate a biomimetic bone composite hydrogel scaffold (BBCHS). In one respect, BBCHS, with a fixed proportion of inorganic and organic components similar to natural bone, exhibits good physical properties. In another respect, the highly biologically active and biocompatible HAp from natural bone effectively promotes osteogenic differentiation, and type I collagen facilitates cell adhesion and spreading. Additionally, the well-structured porosity of the BBCHS provides sufficient growth space for bone marrow mesenchymal stem cells (BMSCs) while promoting substance exchange. Compared to the control group, the new bone surface of the defective location in the B-HA70+Col group is increased by 3.4-fold after 8 weeks of in vivo experiments. This strategy enables the BBCHS to closely imitate the chemical makeup and physical structure of natural bone. With its robust biocompatibility and osteogenic activity, the BBCHS can be easily adapted for a wide range of bone repair applications and offers promising potential for future research and development.


Assuntos
Durapatita , Osteogênese , Durapatita/farmacologia , Durapatita/química , Tecidos Suporte/química , Biomimética , Hidrogéis/farmacologia , Colágeno/farmacologia
2.
Redox Biol ; 66: 102858, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633048

RESUMO

Cartilage homeostasis is essential for chondrocytes to maintain proper phenotype and metabolism. Because adult articular cartilage is avascular, chondrocytes must survive in low oxygen conditions, and changing oxygen tension can significantly affect metabolism and proteoglycan synthesis in these cells. However, whether long noncoding RNA participate in cartilage homeostasis under hypoxia has not been reported yet. Here, we first identified LncZFHX2 as a lncRNA upregulated under physiological hypoxia in cartilage, specifically by HIF-1α. LncZFHX2 knockdown simultaneously accelerated cellular senescence, targeted multiple components of extracellular matrix metabolism, and increased DNA damage in chondrocytes. Through a series of in vitro and in vivo experiments, we identified that LncZFHX2 performed a novel function that regulated RIF1 expression through forming a transcription complex with KLF4 and promoting chondrocyte DNA repair. Moreover, chondrocyte-conditional knockout of LncZFHX2 accelerated injury-induced cartilage degeneration in vivo. In conclusion, we identified a hypoxia-activated DNA repair pathway that maintains matrix homeostasis in osteoarthritis cartilage.


Assuntos
Osteoartrite , RNA Longo não Codificante , Adulto , Humanos , RNA Longo não Codificante/genética , Reparo do DNA/genética , Hipóxia , Osteoartrite/genética , Oxigênio
3.
Clin Transl Med ; 13(8): e1358, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537733

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have risen to prominence as important regulators of biological processes. This study investigated whether circGNB1 functions as a competitive endogenous RNA to regulate the pathological process of oxidative stress in age-related osteoarthritis (OA). METHODS: The relationship between circGNB1 expression and oxidative stress/OA severity was determined in cartilages from OA patients at different ages. The biological roles of circGNB1 in oxidative stress and OA progression, and its downstream targets were determined using gain- and loss-of-function experiments in various biochemical assays in human chondrocytes (HCs). The in vivo effects of circGNB1 overexpression and knockdown were also determined using a destabilization of the medial meniscus (DMM) mouse model. RESULTS: Increased circGNB1 expression was detected in HCs under oxidative and inflammatory stress and in the cartilage of older individuals. Mechanistically, circGNB1 sponged miR-152-3p and thus blocked its interaction with its downstream mRNA target, ring finger protein 219 (RNF219), which in turn stabilized caveolin-1 (CAV1) by preventing its ubiquitination at the K47 residue. CircGNB1 inhibited IL-10 signalling by antagonizing miR-152-3p-mediated RNF219 and CAV1 inhibition. Consequently, circGNB1 overexpression promoted OA progression by enhancing catabolic factor expression and oxidative stress and by suppressing anabolic genes in vitro and in vivo. Furthermore, circGNB1 knockdown alleviated the severity of OA, whereas circGNB1 overexpression had the opposite effect in a DMM mouse model of OA. CONCLUSION: CircGNB1 regulated oxidative stress and OA progression via the miR-152-3p/RNF219/CAV1 axis. Modulating circGNB1 could be an effective strategy for treating OA.


Assuntos
MicroRNAs , Osteoartrite , Camundongos , Animais , Humanos , Condrócitos/metabolismo , Condrócitos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Cultivadas , Apoptose/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo/genética
4.
Sci Adv ; 9(6): eade5584, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753544

RESUMO

Osteoarthritis (OA) is a degenerative disease with a series of metabolic changes accompanied by many altered enzymes. Here, we report that the down-regulated dimethylarginine dimethylaminohydrolase-1 (DDAH1) is accompanied by increased asymmetric dimethylarginine (ADMA) in degenerated chondrocytes and in OA samples. Global or chondrocyte-conditional knockout of ADMA hydrolase DDAH1 accelerated OA development in mice. ADMA induces the degeneration and senescence of chondrocytes and reduces the extracellular matrix deposition, thereby accelerating OA progression. ADMA simultaneously binds to SOX9 and its deubiquitinating enzyme USP7, blocking the deubiquitination effects of USP7 on SOX9 and therefore leads to SOX9 degradation. The ADMA level in synovial fluids of patients with OA is increased and has predictive value for OA diagnosis with good sensitivity and specificity. Therefore, activating DDAH1 to reduce ADMA level might be a potential therapeutic strategy for OA treatment.


Assuntos
Arginina , Camundongos , Animais , Peptidase 7 Específica de Ubiquitina , Arginina/metabolismo
5.
Global Spine J ; 13(1): 97-103, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33685261

RESUMO

STUDY DESIGN: A retrospective study of prospectively collected radiographic and clinical data. OBJECTIVE: This study aims to investigate the relationship between endplate morphology parameters and the incidence of cage subsidence in patients with mini-open single-level oblique lateral lumbar interbody fusion (OLIF). METHODS: We included 119 inpatients who underwent OLIF from February 2015 to December 2017. A total of 119 patients with single treatment level of OLIF were included. Plain anteroposterior and lateral radiograph were taken preoperatively, postoperatively, and during follow-up. The correlation between disc height, endplate concave angle/depth, cage position and cage subsidence were investigated. Functional rating index (Visual Analogue Scale for pain, and Roland Morris Disability Questionnaire) were employed to assess clinical outcomes. RESULTS: Cage subsidence was more commonly seen at the superior endplates (42/119, 35.29%) than at the inferior endplates (6/119, 5.04%) (p < 0.01). More importantly, cage subsidence was significantly less in patients with superior endplates that were without concave angle (3/20, 15%) than with concave angle (37/99, 37.37%) (p < 0.05). Cage subsidence correlated negatively with preoperative anterior disc height (r = -0.21, p < 0.05), but positively with disc distraction rate (r = 0.27, p < 0.01). Lastly, the distance of cage to the anterior edges of the vertebral body showed a positive correlation (r = 0.26, p < 0.01). CONCLUSIONS: This study for the first time demonstrated that endplate morphology correlates with cage subsidence after OLIF. Since relatively flat endplates with smaller concave angle significantly diminish the incidence of subsidence, the morphology of cage surface should be taken into consideration when designing the next generation of cage. In addition, precise measurement of the disc height to avoid over-distraction, and more anteriorly placement of the cage is suggested to reduce subsidence.

6.
Materials (Basel) ; 15(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057256

RESUMO

This paper proposes a novel density-based concurrent topology optimization method to support the two-scale design of composite plates for vibration mitigation. To have exceptional damping performance, dynamic compliance of the composite plate is taken as the objective function. The complex stiffness model is used to describe the material damping and accurately consider the variation of structural response due to the change of damping composite material configurations. The mode superposition method is used to calculate the complex frequency response of the composite plates to reduce the heavy computational burden caused by a large number of sample points in the frequency range during each iteration. Both microstructural configurations and macroscopic distribution are optimized in an integrated manner. At the microscale, the damping layer consists of periodic composites with distinct damping and stiffness. The effective properties of the periodic composites are homogenized and then are fed into the complex frequency response analysis at the macroscale. To implement the concurrent topology optimization at two different scales, the design variables are assigned for both macro- and micro-scales. The adjoint sensitivity analysis is presented to compute the derivatives of dynamic compliance of composite plates with respect to the micro and macro design variables. Several numerical examples with different excitation inputs and boundary conditions are presented to confirm the validity of the proposed methodologies. This paper represents a first step towards designing two-scale composite plates with optional dynamic performance under harmonic loading using an inverse design method.

7.
Cell Prolif ; 54(6): e13047, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960555

RESUMO

OBJECTIVES: Circular RNAs (circRNAs) are noncoding RNAs that compete against other endogenous RNA species, such as microRNAs, and have been implicated in many diseases. In this study, we investigated the role of a new circRNA (circSLC7A2) in osteoarthritis (OA). MATERIALS AND METHODS: The relative expression of circSLC7A2 was significantly lower in OA tissues than it was in matched controls, as shown by real-time quantitative polymerase chain reaction (RT-qPCR). Western blotting, RT-qPCR and immunofluorescence experiments were employed to evaluate the roles of circSLC7A2, miR-4498 and TIMP3. The in vivo role and mechanism of circSLC7A2 were also conformed in a mouse model. RESULTS: circSLC7A2 was decreased in OA model and the circularization of circSLC7A2 was regulated by FUS. Loss of circSLC7A2 reduced the sponge of miR-4498 and further inhibited the expression of TIMP3, subsequently leading to an inflammatory response. We further determined that miR-4498 inhibitor reversed circSLC7A2-knockdown-induced OA phenotypes. Intra-articular injection of circSLC7A2 alleviated in vivo OA progression in a mouse model of anterior cruciate ligament transection (ACLT). CONCLUSIONS: The circSLC7A2/miR-4498/TIMP3 axis of chondrocytes catabolism and anabolism plays a critical role in OA development. Our results suggest that circSLC7A2 may serve as a new therapeutic target for osteoarthritis.


Assuntos
Osteoartrite/genética , RNA Circular/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Animais , Apoptose , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Osteoartrite/patologia , RNA Circular/análise , Inibidor Tecidual de Metaloproteinase-3/análise
8.
Mol Ther ; 29(1): 308-323, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33125858

RESUMO

Osteoarthritis (OA) is a common, age-related, and painful disease characterized by cartilage destruction, osteophyte formation, and synovial hyperplasia. This study revealed that circPDE4D, a circular RNA derived from human linear PDE4D, plays a critical role in maintaining the extracellular cellular matrix (ECM) during OA progression. circPDE4D was significantly downregulated in OA cartilage tissues and during stimulation with inflammatory cytokines. The knockdown of circPDE4D predominantly contributed to Aggrecan loss and the upregulation of matrix catabolic enzymes, including MMP3, MMP13, ADAMTS4, and ADAMTS5, but not proliferation or apoptosis. In a murine model of destabilization of the medial meniscus (DMM), the intraarticular injection of circPDE4D alleviated DMM-induced cartilage impairments. Mechanistically, we found that circPDE4D exerted its effect by acting as a sponge for miR-103a-3p and thereby regulated FGF18 expression, which is a direct target of miR-103a-3p. In conclusion, our findings highlight a novel protective role of circPDE4D in OA pathogenesis and indicate that the targeting of the circPDE4D-miR-103a-3p-FGF18 axis might provide a potential and promising approach for OA therapy.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Fatores de Crescimento de Fibroblastos/genética , MicroRNAs/genética , Osteoartrite/genética , Interferência de RNA , RNA Circular , Biomarcadores , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia
9.
Front Cell Dev Biol ; 8: 579658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015073

RESUMO

Intervertebral disk degeneration (IVDD) is a spinal disk condition caused by an inflammatory response induced by various proinflammatory cytokines, such as interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and potential therapeutic target for many diseases, especially in regulating the activation of primary inflammatory response genes. Our study investigated a highly selective CDK9 inhibitor, atuveciclib, which protects nucleus pulposus (NP) cells from proinflammatory stimuli-induced catabolism. The effects of CDK9 inhibition were determined in human and rat NP cells treated with IL-1ß in the presence or absence of atuveciclib or small interfering RNA target CDK9. Inhibition of CDK9 led to the attenuation of inflammatory response. In addition, rat intervertebral disk (IVD) explants were used to determine the role of CDK9 inhibition in extracellular matrix degradation. The rat IVDD model also proved that CDK9 inhibition attenuated IVDD, as validated using magnetic resonance imaging and immunohistochemistry. Taken together, CDK9 is a potential therapeutic target to prevent IVDD.

10.
Mol Cancer ; 18(1): 73, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940151

RESUMO

BACKGROUND: As a subclass of noncoding RNAs, circular RNAs (circRNAs) have been demonstrated to play a critical role in regulating gene expression in eukaryotes. Recent studies have revealed the pivotal functions of circRNAs in cancer progression. However, little is known about the role of circTADA2A, also named hsa_circ_0043278, in osteosarcoma (OS). METHODS: CircTADA2A was selected from a previously reported circRNA microarray comparing OS cell lines and normal bone cells. QRT-PCR was used to detect the expression of circTADA2A in OS tissue and cell lines. Luciferase reporter, RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization (FISH) assays were performed to confirm the binding of circTADA2A with miR-203a-3p. OS cells were stably transfected with lentiviruses, and Transwell migration, Matrigel invasion, colony formation, proliferation, apoptosis, Western blotting, and in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circTADA2A, miR-203a-3p and CREB3. RESULTS: Our findings demonstrated that circTADA2A was highly expressed in both OS tissue and cell lines, and circTADA2A inhibition attenuated the migration, invasion and proliferation of OS cells in vitro as well as tumorigenesis and metastasis in vivo. A mechanistic study revealed that circTADA2A could readily sponge miR-203a-3p to upregulate the expression of CREB3, which was identified as a driver gene in OS. Furthermore, miR-203a-3p inhibition or CREB3 overexpression could reverse the circTADA2A silencing-induced impairment of malignant tumor behavior. CONCLUSIONS: CircTADA2A functions as a tumor promoter in OS to increase malignant tumor behavior through the miR-203a-3p/CREB3 axis, which could be a novel target for OS therapy.


Assuntos
Neoplasias Ósseas/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , MicroRNAs/genética , Osteossarcoma/patologia , RNA/genética , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citoplasma/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Osteossarcoma/genética , RNA Circular , Regulação para Cima
11.
Ann Rheum Dis ; 78(6): 826-836, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30923232

RESUMO

OBJECTIVES: Circular RNAs (circRNA) expression aberration has been identified in various human diseases. In this study, we investigated whether circRNAs could act as competing endogenous RNAs to regulate the pathological process of osteoarthritis (OA). METHODS: CircRNA deep sequencing was performed to the expression of circRNAs between OA and control cartilage tissues. The regulatory and functional role of CircSERPINE2 upregulation was examined in OA and was validated in vitro and in vivo, downstream target of CircSERPINE2 was explored. RNA pull down, a luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridisation were used to evaluate the interaction between CircSERPINE2 and miR-1271-5 p, as well as the target mRNA, E26 transformation-specific-related gene (ERG). The role and mechanism of CircSERPINE2 in OA was also explored in rabbit models. RESULTS: The decreased expression of CircSERPINE2 in the OA cartilage tissues was directly associated with excessive apoptosis and imbalance between anabolic and catabolic factors of extracellular matrix (ECM). Mechanistically, CircSERPINE2 acted as a sponge of miR-1271-5 p and functioned in human chondrocytes (HCs) through targeting miR-1271-5 p and ERG. Intra-articular injection of adeno-associated virus-CircSERPINE2-wt alleviated OA in the rabbit model. CONCLUSIONS: Our results reveal an important role for a novel circRNA-CircSERPINE2 in OA progression. CircSERPINE2 overexpression could alleviate HCs apoptosis and promote anabolism of ECM through miR-1271-ERG pathway. It provides a potentially effective therapeutic strategy for OA progression.


Assuntos
MicroRNAs/metabolismo , Osteoartrite/genética , Serpina E2/fisiologia , Animais , Apoptose/genética , Artrite Experimental/terapia , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Marcação de Genes , Terapia Genética/métodos , Humanos , Masculino , MicroRNAs/genética , Terapia de Alvo Molecular/métodos , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , RNA Circular/metabolismo , Coelhos , Serpina E2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...